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Abstract—Quantum distance bounding (QDB) protocols verify
the physical distance between communicating parties, crucial
for secure authentication. Existing QDB protocols use discrete
variable (DV) quantum technologies, which require specialized
equipment and face scalability challenges. In contrast, continuous
variable (CV) techniques in quantum key distribution (QKD)
have demonstrated practicality and compatibility with existing
telecommunications infrastructure.

We introduce a CV QDB protocol that uses entangled EPR
states and simple operations by the prover based on a shared
secret for secure and precise distance measurements. By utiliz-
ing CV, our protocol benefits from quadrature measurements,
enhancing practicality in real-world implementations.

This work represents the first exploration of CV techniques in
QDB protocols, offering a feasible and robust alternative to DV
methods. Our CV QDB protocol aligns with advancements in CV
QKD, overcoming limitations associated with DV approaches and
paving the way for practical implementations of QDB in secure
communication systems.

Index Terms—quantum distance bounding, quantum com-
munication, continuous variable quantum protocols, wireless
security

I. INTRODUCTION

Distance bounding (DB) protocols [1] are specifically de-
signed to prevent relay attacks by verifying the physical
distance between two parties via precise round-trip time
measurements. While DB protocols are indeed critical in
contactless systems like payments and access control, many
classical implementations remain vulnerable because attackers
can relay, copy, or amplify signals using advanced techniques,
thereby undermining the distance claims.

QDB protocols address these vulnerabilities by exploiting
quantum properties (for example, the no cloning theorem and
measurement disturbance) to counter distance fraud, mafia
fraud, and terrorist fraud. Existing QDB work primarily uses
DV encodings, such as single-photon polarization qubits [2]-
[5], which provide strong security but require specialized
single-photon sources and sensitive detectors.

In contrast, CV protocols rely on standard optical compo-
nents (e.g., coherent states and homodyne detection) and often
achieve higher key transmission rates [6]. Motivated by the
success of these techniques in QKD, we propose what is, to
the best of our knowledge, the first CV-based QDB protocol.
Our design employs entangled EPR states, simple quadrature-
based encoding, and continuous quadrature correlations to per-
form secure, precise distance estimation. By leveraging these
practical advantages, the protocol offers a robust alternative to
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DV approaches, while minimizing the prover’s technological
requirements and accelerating processing.

As explained in [4], the use of entangled particles allows to
use physically random challenges that remain unknown even
to the verifier until measurement, reducing the attack surface.
In contrast, non-entanglement-based QDB protocols generate
a pseudorandom challenge classically before encoding it in a
quantum state.

In the next section, we present background and related work
on DV QDB and outline the evolution from DV QKD to CV
QKD. We then introduce our CV QDB protocol and provide an
informal security analysis, focusing on reflection, distance, and
mafia attacks. This analysis illustrates how CV entanglement
can enhance security in QDB without the need for specialized
single-photon hardware.

II. BACKGROUND AND RELATED WORK

This section provides an overview of the key develop-
ments in DB protocols, tracing their evolution from classical
implementations to quantum-based approaches. It begins by
reviewing classical DB protocols, which have established the
fundamental principles upon which QDB protocols are built.
The discussion then shifts to QDB protocols, first examining
DV QDB protocols and their reliance on single-photon tech-
nologies. Finally, it explores recent advancements in CV QKD,
highlighting how these innovations can inspire the evolution
of CV-based QDB systems.

A. Classical Distance Bounding

DB protocols, originally introduced in [1], allow a verifier
to not only authenticate a remote prover but also estimate an
upper limit on their physical distance. Typically, DB protocols
feature three core stages: an initialization phase, a rapid-bit
exchange phase, and a final authentication phase.

During the initialization phase, the prover commits to a
randomly generated nonce. In each round of the rapid-bit
exchange, the verifier sends an unpredictable challenge to the
prover. The prover then computes a response using a minimal
processing operation that combines the challenge with the
committed nonce. This simple operation is chosen specifically
to minimize processing time, ensuring that the measured
elapsed time primarily reflects the propagation delay of the
signal rather than any computational delay at the prover’s side.
The verifier then subtracts an assumed negligible processing



delay at the prover’s side to infer the distance based on the
speed-of-light constraint.

Security rests on two key assumptions. First, the prover does
not learn the challenge in advance, preventing precomputation
of responses. Second, the communication signal travels at
a known maximum speed. This ensures that an adversary
cannot appear closer than they really are without resorting
to implausibly small response times.

B. Discrete Variable Quantum Distance Bounding

DV QDB protocols use discrete properties of single pho-
tons, such as polarization, to transmit information between
communicating parties [2], [3]. The reliance on single-photon
equipment is essential for accurate distance estimation, as it
ensures that the quantum states used for communication main-
tain their integrity against potential eavesdropping attempts.
Recent advancements in DV QDB [4], [5] have integrated
entanglement-based methodologies, where EPR pairs shared
between the verifier and the prover enable functionalities such
as mutual authentication and device independence.

C. Transition from Discrete to Continuous Variable Quantum
Key Distribution

DV QKD protocols, such as BB84 [7] and E91 [8], have
demonstrated the feasibility of quantum-secured communica-
tions. However, these protocols depend on specialized hard-
ware, which can present scalability and cost challenges. In
contrast, CV QKD [6] encodes information in the quadrature
amplitudes of light and can be implemented using standard
telecom components, potentially reducing costs. Moreover,
security analyses indicate that CV QKD resists general attacks
[9], suggesting a degree of robustness. The performance of
CV QKD thus motivates the investigation of CV-based QDB
protocols as a possible means to address the hardware and
scalability limitations associated with DV approaches, even
though the present work remains primarily theoretical.

Fiber-based CV QKD exhibits well-characterized loss pro-
files and low noise levels, which facilitate high key rates
over long distances. Recent experimental demonstrations have
achieved operation over distances of approximately 200 km
using ultralow-loss fiber [10], indicating compatibility with
existing telecom infrastructure.

Free-space CV QKD, which does not require physical ca-
bling, has been explored for satellite-to-ground links to enable
broader coverage. However, free-space implementations must
contend with challenges such as atmospheric turbulence, beam
alignment, and increased background noise, particularly under
daylight conditions [11]. Proof-of-concept demonstrations over
short urban links, combined with recent advancements in
adaptive optics and reconciliation methods, suggest that longer
operational distances may be attainable.

In summary, fiber-based and free-space CV QKD represent
complementary approaches for developing a global quantum-
secure communication infrastructure. Fiber-based systems are
generally more suitable for high key rates over shorter dis-
tances (e.g., within city networks), whereas free-space chan-
nels may facilitate connectivity between distant nodes or

support satellite-based relays. Although the proposed CV QDB
protocol is currently theoretical, the successful implementation
of CV QKD indicates that similar architectures might be
adapted for CV QDB in future research.

III. CONTINUOUS VARIABLE QUANTUM DISTANCE
BOUNDING

The CV QDB protocol (Fig. 1) enables distance estimation
through round-trip time measurements, consisting of three
phases: initialization, challenge-response, and authentication.

A. Initialization Phase

We assume that the prover and the verifier share a secret
key K. In the initialization stage of the protocol, the verifier
and the prover exchange nonces n,, and n,, respectively. Both
parties then use a secure pseudorandom function (PRF) to
compute the concatenation of two binary strings a and b of
equal length:

a]lb=PRFg(n, || ny). (1)

These strings are fresh, unpredictable, and known only to the
verifier and the prover, assuming both K and the PRF remain
secure. They will be used to select quadratures for measuring
and encoding information during the subsequent challenge-
response phase.

B. Challenge-Response Phase

Because a and b each have n bits, the protocol is repeated
n times, once for each element a; (and the corresponding b;)
in these secret strings. In each round ¢, the following steps are
performed:

1) Entangled State & Challenge Preparation: The ver-
ifier prepares an EPR state, |¥),, comprising two
modes labeled Mode A and Mode B. The verifier keeps
Mode A locally and sends Mode B, the challenge, to
the prover via a quantum channel. The moment the
verifier sends Mode B, it starts a clock to measure the
round-trip time. By using an entangled CV state (rather
than unentangled), the measurement outcome remains
inherently quantum-random and thus unpredictable to
an adversary before it is actually measured.

2) Verifier’s First Measurement: Immediately after send-
ing Mode B, the verifier performs homodyne detection
on Mode A according to a;:

0 measure I 4,
a; = (2)
1 measure p4.

The outcome of this measurement is recorded as m;.
3) Prover measures Challenge: Upon receiving Mode B,
the prover measures in the quadrature selected by a;,
matching the verifier’s choice:
0 measure Zp,
a; = 3)
1 measure ppg.

The outcome of this measurement is recorded as m.
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Fig. 1. Schematic illustration of one round of the CV QDB protocol. The verifier begins by preparing an EPR state comprising Mode A and Mode B. The
verifier sends Mode B to the prover and starts a clock. Then, the verifier performs homodyne detection on Mode A. Specifically, if a; = 0, the verifier measures
the z-quadrature; if a; = 1, the verifier measures the p-quadrature. The measurement result is m;. Upon receiving Mode B, the prover measures it in the
same quadrature basis used by the verifier (the quadrature basis is determined by a;: if a; = 0, measure z-quadrature; if a; = 1, measure p-quadrature),
obtaining the outcome m/. The prover then prepares a new Mode C by encoding m/, into the corresponding quadrature: if b; = 0, the prover substitutes the
x-quadrature of Mode C with m/; if b; = 1, the prover substitutes the p-quadrature with m/. Finally, the prover sends Mode C back to the verifier. Once
the verifier receives Mode C, it stops the clock. Depending on the value of b;, the verifier measures the x-quadrature (b; = 0) or the p-quadrature (b; = 1)
of Mode C, obtaining outcome m/. The verifier checks whether m; = m//. If this condition holds and the round-trip time is sufficiently short, the verifier
confirms an upper bound on the distance from the verifier to the prover and authenticates the prover’s identity.

4) Prover encodes Response: The prover then prepares the
response, Mode C, by encoding the previously measured
outcome m} according to b;:

0 substitute into Z¢,
bi = o 4)
1 substitute into pc.

5) Returning the Response: The prover sends Mode C
back to the verifier. Once the verifier receives Mode C,
it stops the clock. The measured time will be used to
estimate the distance to the prover.

6) Verifier measures Response: Upon receiving Mode C,
the verifier measures the quadrature indicated by b;:

0 measure Z¢,
bi = o)
1 measure pc.
The outcome of this measurement is recorded as m/'.

This concludes the challenge-response phase of the protocol.

C. Authentication Phase

At the end of all n rounds, the verifier holds pairs of
measurement outcomes {m;} (from Mode A) and {m}} (from
Mode C). For an ideal EPR state and honest operations,
measuring 4 and £p when a; = 0 implies

((2a—ip)") =0, ©)

while measuring p4 and pp when a; = 1 implies
. 2
((pa—pB)") ~0. (7

Thus, in an honest scenario, we expect m; =~ m}. More-
over, because b; determines which quadrature is measured in
Mode C, the verifier expects

”

m; = m) 3

for all rounds i. If m; = m] (within acceptable tolerances)
and the round-trip time is sufficiently short, the verifier accepts
that round as successful.

By confirming that these correlations hold for every round
and that the timing constraints are satisfied, the verifier con-
cludes it is indeed communicating with the legitimate prover.
Although each match indirectly indicates that the prover
measured and encoded according to the verifier’s secret bits a;
and b;, the primary concern of the verifier is the authenticity
and proximity of the prover. Hence, from the combination of
correlated outcomes and short round-trip times, the verifier is
assured of the prover’s identity and its bound on distance.

IV. SECURITY ANALYSIS

In this section, we present a security analysis of our QDB
protocol, focusing on three classical attack strategies widely
discussed in the literature [2]-[5]: (1) reflection attacks, (2)
distance fraud attacks, and (3) mafia fraud attacks. Under the
assumption that the secret bits a; and b; remain secure, we
demonstrate that any adversary lacking knowledge of these



bits must rely on guessing, resulting in success probabilities
that decrease exponentially with the number of rounds n.

A. Assumptions and Practical Considerations

Before detailing the attack strategies, we briefly list our
main assumptions and acknowledge the practical limits of
idealized EPR correlations:

o Honest Verifier Model. We assume that the verifier
faithfully follows the protocol, generating fresh entangled
modes and performing the correct quadrature measure-
ments. Any deviation by the verifier could invalidate the
distance-bounding guarantees.

o Ideal EPR States vs. Real-World States. Throughout
the security analysis, we treat |¥) , . as an ideal EPR
(maximally entangled) state. In practical implementa-
tions, finite squeezing, losses, and detector inefficiencies
increase the measured quadrature variance above zero.
Nonetheless, one may define a small variance threshold
Omax Such that an honest implementation with sufficiently
strong squeezing keeps the measured quadrature differ-
ences below oyax With high probability, whereas any
unentangled or adversarially modified mode would yield
variances exceeding this threshold. In essence, measuring
how closely m; and m! track each other provides a strong
indication of genuine EPR-like correlations.

o Timing Constraints. We assume there is a strict time
window enforced by the protocol to ensure that any
attempt to delay or prematurely send a response (as in
distance or mafia fraud) is detected. This timing window
is set based on the known maximum propagation speed
of signals and the distance bound we wish to guarantee.
Due to the stringent turnaround times, any intercept-and-
measure strategy would exceed the protocol’s time limit
and thus be immediately flagged by the verifier.

o Processing Delays at the Prover. A key practical con-
sideration is the processing time required by the prover
to generate Mode C. Even with a strictly enforced timing
window, this inherent delay increases the overall round-
trip time. If the processing delay constitutes a significant
fraction of the signal propagation delay, it introduces
additional uncertainty in the timing measurement and
effectively establishes a lower bound on the resolvable
distance, especially in short-range applications. Conse-
quently, optimizing the prover’s hardware and processing
to minimize latency is essential. Future work should tar-
get these improvements to ensure that processing delays
do not compromise protocol performance.

Under these assumptions, we now analyze three major
classes of attacks, namely reflection, distance fraud, and mafia
fraud, and show why they fail with exponentially small prob-
ability in the number of rounds.

B. Reflection Attack

A reflection attack attempts to break the protocol by simply
returning the received mode (i.e., Mode B) to the verifier
without performing any of the secret-dependent measurements

or encodings. In our CV QDB protocol, each round ¢ depends
on two secret bits:

e a;, which determines the quadrature measured by both
the verifier (in Mode A) and the prover (in Mode B).

e b;, which determines how the prover re-encodes the
measured outcome (into & or p) and which quadrature
the verifier measures upon receiving the returned mode
(Mode C).

To analyze the attacker’s probability of success under a
reflection-only strategy, we consider two cases:

a) Case 1: a; = b;.: When a; = b;, the honest prover
would measure the same quadrature the verifier used (specified
by a;) and then re-encode the measured outcome & or p into
the same quadrature (specified by b;). Consequently, the final
measurement by the verifier on Mode C also targets the same
quadrature measured in Mode A, yielding m; = m}. If an
adversary instead returns Mode B unaltered, the original EPR
correlations remain fully intact in this same quadrature, ensur-
ing that the attacker always reproduces the correct correlation
in these rounds.

b) Case 2: a; # b;.: When a; # b;, the honest prover
measures one quadrature (determined by a;) but encodes the
result into the orthogonal quadrature (determined by b;). This
cross-quadrature encoding enforces, for example, £ 4 ~ pc or
pa =~ Zc. An adversary who simply returns the unmodified
Mode B fails to establish these cross-quadrature correlations
because Mode B is still aligned with a;, not b;. Consequently,
the verifier’s final measurement (in the b;-quadrature) will not
match the verifier’s first measurement (in the a;-quadrature),
causing an immediate protocol failure in all rounds where
a; 75 bz

¢) Overall Success Probability.: Because a; and b;
are each independently chosen from {0,1} in each round,
Pr(a; = b;) = 1/2 and Pr(a; # b;) = 1/2. In the best case
for the attacker, they might pass all rounds for which a; = b;.
However, they inevitably fail every round where a; # b;.
Thus, the probability of passing all n rounds under a pure
reflection strategy is bounded by (1/2)™. This exponential
decay in success probability holds unless the attacker can
correctly guess or otherwise learn the secret bits a; and b;
in real time, which our protocol design precludes.

C. Distance Fraud Attack

In a distance fraud attack, a dishonest prover, who indeed
knows the bits {a;,b;} by the sharing of the secret key,
attempts to appear closer to the verifier than they really are
by sending a stand-in mode (Mode D) before legitimately
receiving and measuring the entangled Mode B. Although the
dishonest prover knows which quadratures will be measured
(a;) and how the outcomes should be encoded (b;), they do
not know the random outcome m; that the verifier obtains
by measuring the entangled Mode A. This outcome arises
from intrinsic quantum fluctuations in the EPR state and thus
cannot be guessed reliably. Without actually using the genuine
Mode B, the dishonest prover’s stand-in mode (Mode D)
lacks the requisite EPR correlations with Mode A, causing a



systematic mismatch in the verifier’s final check m; L my.
Consequently, under our timing and secrecy assumptions,
any attempt at distance fraud cannot succeed in any round,
ensuring that the dishonest prover is invariably exposed and
the distance guarantee remains intact.

D. Mafia Fraud Attack

A mafia fraud attack involves an external adversary attempt-
ing to convince the verifier that it is communicating directly
with a genuine but potentially distant prover. We distinguish
two principal strategies:

1) Pre-Ask Strategy: The adversary tries to obtain the
prover’s responses (or partial information about them)
in advance of the verifier’s actual challenges and then
replays these early-obtained responses at the correct
time. In some cases, this may not entail a pure verbatim
replay of recorded signals; rather, partial data or side
information might be used to craft or approximate a
valid response. In the quantum setting, this process is
further constrained by the no-cloning theorem and the
disturbance caused by measurement.

2) Intercept-and-Respond Strategy: The adversary inter-
cepts the verifier’s challenge mode (Mode B) and at-
tempts to craft a fraudulent response locally, without
passing the entangled mode onward to the legitimate
prover.

Below, we explain why both variants of mafia fraud fail with

overwhelmingly high probability under our CV QDB protocol.

1) Pre-Ask Strategy: A defining feature of our protocol is
that each challenge round uses fresh entanglement between the
verifier’s locally measured mode (Mode A) and the traveling
mode (Mode B). The prover must genuinely use Mode B while
it remains entangled with Mode A; otherwise, the strong EPR-
like correlations needed for the protocol’s final acceptance test
will be lost.

If the adversary attempts to pre-ask or store responses from
the honest prover before the verifier’s challenge, any stored
modes will necessarily lack the entanglement with Mode A.
From the verifier’s perspective, they become separable states
that cannot reproduce the near-ideal correlations 4 ~ &g or

pa = pp. As soon as the verifier checks m; ~ m; at the
end, any stored or pre-generated modes are revealed to lack
genuine entanglement with Mode A. Since those modes cannot
reproduce the correct EPR-like correlations, the adversary’s
pre-ask attack will inevitably fail in every round, making it
impossible to deceive the verifier about the prover’s identity
or distance.

2) Intercept-and-Respond Strategy: Consider an adversary
A who intercepts Mode B in transit and does not forward it
to the legitimate prover. In each round i, the verifier’s secret
bits (a;, b;) are derived from the strings produced by the PRF,
as described in the initialization phase. The adversary then
attempts to guess (a7, b7). First, it measures Mode B along
the quadrature a;“. Next, it encodes the measured outcome
into a fresh Mode C along quadrature b;“. Finally, this newly
prepared Mode C is sent back to the verifier.

Because {a;,b;} are unknown to the adversary, any mis-
match in guessing (ai,b/) # (a;,b;) will cause the final
measurement outcome in Mode C to differ from the verifier’s
outcome in Mode A. Specifically, if a;“ # a;, the adversary
measures the orthogonal quadrature of Mode B and obtains no
useful information about the verifier’s measurement outcome
m;. Similarly, if bg“ # b;, the adversary re-encodes into
the wrong quadrature of Mode C, which ensures a mismatch
between the adversary’s outcome and the verifier’s. Only when
(e = a;, b = b;) can the adversary’s measurements and
encodings align with the verifier’s.

Since each bit in {a;, b;} is equally likely to be 0 or 1, the
probability of choosing the correct pair in any round is 1/4.
Over n rounds, the probability that the adversary succeeds
in guessing all pairs {a;,b;} correctly is (1/4)™, which
decreases exponentially in n. Consequently, an intercept-and-
respond strategy without knowledge of the secret bits fails with
overwhelming probability for large n.

V. SIMULATION

This section describes the simulation of our proposed CV
QDB protocol. This simulation serves as a proof-of-concept to
confirm that our conceptual model of the protocol’s behavior
is sound, rather than to provide a full end-to-end emulation.
Our simulation omits both timing components and the actual
exchange of challenges and responses; instead, all operations
are assumed to be performed locally. Consequently, while the
simulation demonstrates the theoretical feasibility of the CV
QDB under idealized conditions, it does not constitute exper-
imental proof that the protocol would behave identically in a
physical implementation. Algorithm 1 presents the pseudocode
for the protocol simulation.

In addition to simulating the standard protocol, one can also
simulate the attacks discussed in Section IV. For example,
Algorithm 2 demonstrates how a reflection attack can be sim-
ulated by simply omitting the response phase of the protocol.

All coding simulations of the protocol and the presented
attacks are available in our GitHub repository [12].

VI. CONCLUSION

This work introduced a CV QDB protocol based on EPR
states and homodyne-based quadrature measurements. By us-
ing entangled modes and simple quadrature-based encoding at
the prover’s end, the protocol provides both entity authenti-
cation and distance verification. Crucially, its security relies
on two key aspects: leveraging nonclassical EPR correlations,
which cannot be replicated by classical or independently pre-
pared quantum systems, and enforcing strict timing constraints
so that attacks fail under round-trip time checks. Consequently,
standard attacks such as reflection, distance fraud, and mafia
fraud cannot produce the required correlations without knowl-
edge of the secret bits, causing their overall success probability
to decay exponentially with the number of rounds.

Future investigations may explore a wider range of adver-
sarial strategies, address realistic device imperfections (such
as noise, state preparation errors, and detection inefficiencies),



Algorithm 1: CV QDB

Data: n (number of runs)
Result: Correlation between |m| and |m”|
1 Generate two random binary arrays a and b of length
n;
2 for ¢ < 1 to n do
3 // Challenge Phase (Modes A and B)
4 | Prepare an EPR state |¥) , ;
5 if a[i] = 0 then
6 Measure Mode A in the 24 quadrature;
7 Measure Mode B in the 5 quadrature;
8 else
9 L Measure Mode A in the pa quadrature;

10 Measure Mode B in the pp quadrature;

1 Record the measurement outcomes m[i] and m/[i];
12 // Response Phase (Mode C)

13 Prepare a single-mode Gaussian state;

14 | if b[¢] =0 then

15 Displace Mode C using m/[i] (angle 0);
16 Measure Mode C in the ¢ quadrature;
17 else

18 Displace Mode C using m/[i] (angle 7/2);
19 Measure Mode C in the pc quadrature;

20 | Record the measurement outcome m” [i;

21 Compute the correlation between |m/| and |m”| over
all runs;
22 Output: the computed correlation.

Algorithm 2: CV QDB - Reflection Attack

Data: n (number of runs)
Result: Correlation between |m| and |m”|
1 Generate two random binary arrays a and b of length
n;
2 for i < 1 ton do
3 // Challenge Phase (Modes A and B)
4 | Prepare an EPR state |¥) , 5;
s | if a[i] =0 then
6 ‘ Measure Mode A in the & 4 quadrature;
7 else
8 L Measure Mode A in the p4 quadrature;

9 | if b[¢] =0 then

10 ‘ Measure Mode B in the £p quadrature;

1 else

12 L Measure Mode B in the pp quadrature;

13 Record the measurement outcomes m|i] (Mode A)

and m”'[i] (Mode B);

-
'S

Compute the correlation between |m| and |m”| over
all runs;
QOutput: the computed correlation.

-
W

and assess the protocol’s feasibility under practical conditions.
Overall, this protocol offers a framework for CV QDB that
warrants further theoretical and experimental study.
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